
Benha Journal of Applied Sciences (BJAS)                                                                               print: ISSN 2356–9751  

Vol. (6) Issue (6) Part (2) (2021), (309-318)                                                                                online: ISSN 2356–976x 

http://bjas.journals.ekb.eg 

Benha Journal Of Applied Sciences, Vol. (6) Issue (6) Part (2) (2021( 

 

A Theoretical investigation of Magnetohydrodynamics flow and the heat 

transfer process of a fluid between two porous discs 
M. Abdel Wahab, Mostafa.Y.El-Bakry, S.E.E.Hamza

 
and A.G.El-ashhab 

Physics Dept., Faculty of Science, Benha Univ., Benha, Egypt 

E-Mail: aya.gamal@fsc.bu.edu.eg 

Abstract 

In the present study, a theoretical investigation is considered for the steady incompressible flow of an electrically 

conducting and viscous fluid between two porous discs, one rotating while the other is a stationary disc with a constant 

uniform suction velocity    on the surface of both discs. An axial magnetic field is subjected to the fluid. The problem 

of heat transfer process and the temperature distribution for the flow field has been investigated. The formulation of the 

problem, the basic governing equations in the suitable system of coordinates and the appropriate boundary conditions 

that govern the fluid motion have been obtained. By using the suitable similarity transformation, the governing 

nonlinear partial differential equations of motion are transformed into a dimensionless nonlinear ordinary differential 

equations that solved by using an analytical approximation method. The graphical illustrations due to the effect of a 

various values of the Hartmann number, the Reynolds numbers and the Prandtl number on the fluid velocity and the 

temperature distributions have been discussed. 
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1. Introduction 

The study of fluid flow between parallel porous 

discs considerably analyzed in the recent years because 

of its importance in several of technologies and 

engineering applications. Some important examples of 

these applications are in the electric power generating 

system, hydrodynamical machines, machines of food 

processing, computer storage devices, cooling of 

turbine blades, gas turbines and the crystal growth 

process. For the first time Von Karman [1] suggested a 

method to transform set of a partial differential 

equations that govern the flow over an infinite rotating 

disk to nonlinear form and until now many researchers 

depended on these transformations to make the 

equations simpler in mathematical handling. Batchelor 

[2] that extended Von Karman work for studying the 

solutions of various ranges of  the Reynolds numbers 

based on the angular velocities of the disks. Elcrat [3] 

studied a boundary value problem that yields an exact 

solutions of the Navier-Stokes equations for the flow 

between two infinite coaxial porous disks and proved 

the theory of existence, uniqueness, and asymptotic 

behavior of the solution also considering uniform 

suction or injection on the disks. Rasmussen [4] 

considered in this paper the flow between two porous 

coaxial disks and a numerical solutions have been 

calculated for this problem. Gaur and Chaudhary [5] 

investigated a problem of the heat transfer process for 

laminar flow between two parallel porous disks where 

the flow is due to suction or injection at both the two 

disks. Rudraiah and Chandrasekhara [6] studied three 

dimensional MHD flow and the interaction of injection 

or suction between a rotating and a stationary disk and 

asymptotic solutions are obtained. A series solutions 

are given for the small values of Reynolds numbers 

that introduced by Stewartson [7]. Wang and Watson 

[8] examined the flow between rotating disks with a 

uniform injection on the porous disk. Srivastava and 

Sharma [9] studied the effect of a transverse magnetic 

field on the flow between two infinite disks by 

introducing a solution for the rotational Reynolds 

number. Stephenson [10] numerically and analytically 

studied Magnetohydrodynamics flow between rotating 

coaxial disks for arbitrary Hartmann and Reynolds 

numbers. Kumar, et al. [11] studied the MHD flow of a 

conducting fluid between a non-porous rotating and a 

stationary porous disk where the governing equations 

of motion are solved by using least change secant 

update quasi-Newton and modern root finding 

techniques. A numerical study of 

Magnetohydrodynamics flow between a rotating and a 

stationary porous coaxial discs examined by Agarwal 

and Bhargava [12] with a suction on the stationary 

lower disc. The unsteady flow between two parallel 

rotating disks of a fluid with the heat transfer is 

investigated by Ibrahim [13]. An approximate solution 

presented by Ersoy [14] for the flow of a linearly 

viscous fluid between two rotating disks about two 

distinct vertical axes. Ashraf and Wehgal [15] solved 

numerically the problem of axisymmetric steady 

laminar incompressible flow of a micropolar fluid 

between two stationary infinite parallel porous disks 

with uniform injection through the surface of the disks. 

Abhijit Das [16] studied the steady flow of an 

incompressible viscous fluid between two infinite 

rotating coaxial disks and an exact analytical solution 

is obtained by using a Homotopy analysis method. 

Analysis study by using the Homotopy perturbation 

method for the two dimensional MHD flow and heat 

transfer of Casson fluid between porous disks is carried 

out by Devaki, et al. [17]. A lot of authors [18-20] done 

and introduced researches about the MHD flow 

between two disks. 

So the main purpose of this paper is analyzing the 

MHD flow and the heat transfer of a steady 

incompressible viscous electrically conducting fluid 

between two porous discs. The case of uniform suction 

on both discs will be considered and an approximate 

analytical technique will be used for the solution of the 

governing equations of the problem. The discussion 
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and illustration of the figures in terms of the 

nondimensional flow parameters will be shown and the 

effect of these parameters on the velocity fields and the 

temperature are studied. 

2. Formulation of the problem 

Consider the steady incompressible flow of an 

electrically conducting fluid of viscosity   , density   

and with electrical conductivity    between two parallel 

porous discs. The lower stationary disc is located at 

plane     while the upper disc is placed at     and 

rotating with a constant angular velocity    . The fluid 

is extracted (suction) with a uniform velocity   . A 

uniform magnetic field is applied at the discs of the 

strength    that directed parallel to the z- axis, B =    

   Let us consider that the distance     between the two 

discs is very small compared to the radius of the discs, 

so we can neglect the edge effects.    is the 

temperature at the lower disc while    are considered 

to be the temperature at the upper disk with      , so 

due to the temperature gradient between the two discs, 

the heat transfer effects will be discussed . The 

problem geometry is shown in Fig (1). 

 

3. The basic governing equations 

The governing equations of motion in case of the MHD steady viscous incompressible flow of the fluid in the free 

region       are:        

a. The Navier-Stokes equation 

                                     ,       (1) 

b. The continuity equation for an incompressible fluid 

                    ,          (2) 

c. The equation of the temperature field, by neglecting the viscous dissipation 

                           .        (3) 

Where the velocity vector of the fluid is   , the gradient pressure is  p ,    is the Laplacian operator,   is the current 

density vector,   is the magnetic field vector,   
 

    
  is the thermal diffusivity, k is thermal conductivity of fluid,    is 

the specific heat at constant pressure and   
 

 
   is the kinematic viscosity of the fluid.               

The velocity vector   in the cylindrical polar coordinates which the suitable system for our problem may be written 

as following: 

       ̂           .          (4) 

The three dynamical equations of motion in a component form by considering the flow is symmetrical around z-

axis (any derivatives with respect to   equal zero) are taken as: 
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Where     in the cylindrical polar coordinates (r,  , z ) is     
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The governing equations of the fluid flow have the corresponding boundary conditions: 

At                                   (6a) 

 

At                                     (6b) 

By using  the following similarity transformation, that similar to Chandrasekhara et al. [6] , Kumar et al. [11] and Von 

Karman [1] to simplify the set of partial differential Equations (5a) to (5e) to be in the form of dimensionless ordinary 

differential equations,   
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 ,       (7a) 

        
   

 

    
   

 
       The new independent variable    

 

 
            (7b)  

The prime on      denotes differentiation with respect to  .  

The velocity components in Eq (7a) satisfying the continuity Eq (5a). By using Eqs (7a) and (7b) into the governing Eqs 

(5b) to (5e), we get the following equations in the dimensionless form: 

              [                        ]                   (8a) 

   

            [                    ]                 (8b) 

 

            [                    ]         (8c) 

 

                 F (        .          (8d) 

Where     √
   

    

   
  is the magnetic parameter (Hartmann number),   

    

 
 is the suction Reynolds number, 

   
    

 
 is the rotational Reynolds number,    

  
 

   is the ratio of Reynolds numbers and Pr = 
 

 
  is known as the 

Prandtl number. In the present problem we will discuss the suction case on both the two discs i.e.    . 

The pressure term will be estimated by the integration of Eq (8c) with respect to  :    

   
 

 
[    ]              (8e) 

Where            is the dimensionless pressure difference distribution and     is the pressure at the stationary 

porous disc at     . 

The boundary conditions Eqs (6a) and (6b) must be reduced to the dimensionless form as:  

At                                (9a) 

 

At                                 (9b) 

 

4. Solution of the problem 

As we mentioned before, the equations (8a), (8b) and (8d) are a set of nonlinear ordinary differential equations and 

haven't reached to an exact analytical solution until now for these Eqs, and all of the tries which achieved are either an 

approximate analytical solution or a numerical solution. We will seek an approximate solution to these equations that 

subjected to the boundary conditions Eqs (9a) and (9b) by using the perturbation method that depends on the following 

assumptions:  

 The Eqs (8a), (8b) and (8d) can be rewritten as: 
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 For the case of uniform suction on the two discs, let     
  

 
 and If  assumed the solution for the  case of 

       
 

 
   , so Eqs (10a) to (10c) can be rewritten as:  
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The unknown functions    ,      and      can be expanded in successive powers of  
 

 
  as following: 



312                  A Theoretical investigation of Magnetohydrodynamics flow and the heat transfer process of a fluid 

Benha Journal Of Applied Sciences, Vol. (6) Issue (6) Part (2) (2021( 

            
 

 
       

 

              ,                    (12a) 

 

            
 

 
       

 

                                                            (12b)  

 

            
 

 
       

 

             .                    (12c) 

For simplicity of the solution, let's take only the first two terms in the previous expansion and the higher order 

terms in Eqs (12a) to (12c) are complicated algebraically and noted that the effects of the higher order terms are 

negligible in comparison with the zero and first order terms. So we will restricted in our analysis only to the zero and 

first order solutions.       

Substituting Eqs (12a), (12b) and (12c) into Eqs (11a), (11b) and (11c) then collecting the coefficients of the same 

powers of  
 

   , 
  

   
  we get: 

The zero-order approximation: 
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The first-order approximation: 
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The corresponding boundary conditions on the functions                        are reduced to: 
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Zeroth order solutions: the zero-order solutions of the axial, radial and tangential velocity components and the 

temperature distribution which satisfying the boundary conditions Eqs (15a) to (15d) are: 
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First order solutions: after some algebraic calculations, the first order solutions of the velocity and the temperature 

distribution Eqs (14a) to (14c) that satisfying the boundary conditions Eqs (15) are: 
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Table (1) the values of all constants that satisfying the boundary conditions Eqs (15) to (15d) have been determined in 

the following table. 
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5. Results and discussion 

It’s clear that From the present problem solution, 

the velocity and the temperature distribution of the 

fluid  flow are depended on the following flow 

parameters namely ,Hartmann number M, suction 

Reynolds number R, rotational Reynolds number R1 

and the Prandtl number Pr.  

Figures 2-5 illustrate according to the 

approximation analytical results, the effect of the 

Hartmann number M on the axial, radial, tangential 

velocities and temperature distribution. By increasing 

the values of M, the axial velocity F(η) decreases near 

to the lower disc until the central plane then it increases 

near the upper disc  as shown in Fig(2). With  

increasing M the radial velocity decreased at        

again through        then increased in the 

interval              and the  maximum  value of  

The radial velocity Fʹ(η)  shifts towards the rotating 

disc and has a minimum value at the midplane, also 

noted that       nearly symmetrical around   
     see Fig(3).The effect of increasing M is to 

decrease the tangential velocity G(η) as shown in 

Fig(4). From Fig (5) it can be noticed that the 
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temperature of the fluid decreases over with increasing 

  for a given M. The effect of increasing M on the 

temperature is to slightly increase it for       and the 

stability occurs at the midplane of the two discs but 

near to the upper disk it decreases at       . 

 
 

Fig. (2) Effect of different values of M on the axial velocity F(η) at R= 0.5 and R1 = 2. 

 

 
Fig. (3) Effect of different values of M on the radial velocity Fʹ(η) at R= 0.5 and R1 =2 . 

 

Fig. (4) Effect of different values of M on the tangential velocity G (η) at R= 0.5. 
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Fig. (5) Effect of different values of M on the temperature      at R=1 and Pr =3. 

 

Figures 6-9 show the effect of the suction 

Reynolds number R on the axial, radial and tangential 

velocities and temperature distribution. With increasing 

values of the suction Reynolds number R noticed that, 

the axial velocity F(η) will be increased as shown in 

Fig(6). By increasing suction velocity through the 

discs, the radial velocity Fʹ(η)  increased near to the 

lower disc until       then decreased and falls to 

zero at the upper disc as shown in Fig (7). With the 

increase in R  values, the tangential velocity G(η) 

increases until the value of       then decreases in 

the area nearer to the upper disk as shown in Fig(8). 

Fig (9) illustrates that when the values of R increased, 

a decrease in the temperature near to the lower disc at 

      is observed and above η > 0 5 an increase in 

the temperature distribution reached. 

 

 

                         Fig. (6) Effect of different values of R on the axial velocity F(η) at M= 4 and R1= 4. 

 

    Fig. (7) Effect of different values of R on the radial velocity Fʹ(η) at M= 4 and R1= 4. 
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Fig. (8) Effect of different values of R on the tangential velocity G(η) at M= 4. 

 

Fig. (9) Effect of different values of R on the temperature      at M= 8 and Pr =3. 

 

Figures 10-11 indicate the effect of rotational 

Reynolds number R1 on the axial and radial velocity. 

The axial velocity F(η) decreased with increasing R1 as 

shown in Fig(10)   The radial velocity Fʹ(η)  decreased 

near to the lower disc until       then increased and 

the maximum value of the velocity shifts towards the 

upper disc by increasing the value of R1 as shown in 

Fig. (11). According to our present approximating 

solutions noticed that tangential velocity and 

temperature distribution not dependent on R1. 

 
 

Fig. (10) Effect of different values of R1 on the axial velocity F(η) at  M = 4 and R= 0.2. 
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Fig. (11) Effect of different values of R1 on the radial velocity Fʹ(η) at M= 4 and R= 0.6. 

 

 
Fig. (12) Effect of different values of Pr on the temperature      at M= 8 and R =2. 

 

Figure (12) illustrates the effect of Prandtl 

number Pr on the temperature distribution. With 

increasing the values of Pr will cause a decrease in the 

temperature near to the lower disc and again the 

stability occurs at the midplane at       whereas an 

increase in the temperature profiles near to the upper 

disc. 

 

6. Conclusion 

In The present work, the effects of governing 

parameters on the steady MHD flow and heat transfer 

process of an incompressible viscous and electrically 

conducting fluid between two discs have been 

investigated. Approximate analytical solution of the 

transformed governing equations has been obtained. 

From the results of the analytical computations, the 

following conclusions have been extracted as the 

following: 

A. By increasing the magnetic parameter M values, 

the axial velocity falls near to lower disc and 

increased near the upper disc and the maximum 

value of the radial velocity shifts towards the 

rotating disc and has a minimum value at the 

midplane of the discs. The effect of increasing M 

is to decrease the tangential velocity and the 

temperature slightly increased near to the lower 

disc but near the upper disc it slightly decreased. 

B. As the values of suction Reynolds number R 

increased, the axial velocity is increased, while the 

radial velocity increased near the lower disc then 

decreased at       , the tangential velocity 

increased until the value of       but decreased 

nearer to the upper disk area and the temperature 

distribution has been decreased near to the lower 

disc while an increase in the temperature above 

η > 0 5 has been noticed. 

C. Increasing the values of the Prandtl number caused 

a decrease in the temperature profiles in a region 

towards lower disk at        but results in an 

increase in temperature profiles in a region after 

the central plane towards the upper disk. Noticed 

that the effect of Pr formed as an effective 

insulating layer at the midplane of the disks 

(flattening of the temperature profile). 
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